Interval-Division Numeral Systems (Supplement)

JM

Abstract

A companion to Interval-Division Numeral Systems. A working out of all remarks, corollaries, and exercises for the reader.

(If you notice any errors, please let me know. Thanks.)

Remark 1.1

$$\phi(\{a_n\}) = \lim_{k \to \infty} \phi_k(\{a_n\}) \tag{1}$$

for every $\{a_n\} \in \mathcal{A}$.

Proof

$$\phi(\{a_n\}) = \sum_{n=1}^{\infty} \frac{a_n}{\prod_{m=1}^n b_m} = \lim_{k \to \infty} \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m} = \lim_{k \to \infty} \phi_k(\{a_n\})$$

Remark 1.2

$$\phi_{k+1}(\{a_n\}) \ge \phi_k(\{a_n\}) \tag{2}$$

for every $\{a_n\} \in \mathcal{A}$ and every $k \in \mathbb{N}_0$.

Proof

$$\phi_{k+1}(\{a_n\}) = \sum_{n=1}^{k+1} \frac{a_n}{\prod_{m=1}^n b_m}$$

$$= \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m} + \frac{a_k}{\prod_{m=1}^k b_m}$$

$$= \phi_k(\{a_n\}) + \frac{a_k}{\prod_{m=1}^k b_m}.$$

$$\begin{split} \frac{a_k}{\prod_{m=1}^k b_m} &\geq 0, \\ \phi_k(\{a_n\}) + \frac{a_k}{\prod_{m=1}^k b_m} &\geq \phi_k(\{a_n\}), \\ \phi_{k+1}(\{a_n\}) &\geq \phi_k(\{a_n\}). \end{split}$$

Corollary 1.4

It follows from Lemma 1.3 that

$$\phi_k(\{a_n\}) < 1 \tag{3}$$

for every $\{a_n\} \in \mathcal{A}$ and every $k \in \mathbb{N}_0$.

Proof

```
Let \{a_n\} \in \mathcal{A} and k \in \mathbb{N}_0

Suppose k = 0.

Then \phi_k(\{a_n\}) = 0 < 1.

Suppose k > 0.

Then by Lemma 1.3, \phi_k(\{a_n\}) < \phi_0(\{a_n\}) + \frac{1}{\prod_{m=1}^0 b_m} = 0 + 1 = 1.

So \phi_k(\{a_n\}) < 1 for every \{a_n\} \in \mathcal{A} and every k \in \mathbb{N}_0.
```

Remark 1.5

$$\phi_k(\{a_n\}) \ge 0 \tag{4}$$

for every $\{a_n\} \in \mathcal{A}$ and every $k \in \mathbb{N}_0$.

Proof

By definition, $a_i \geq 0$ and $b_i > 0$ for all $i \in \mathbb{N}$. So $\prod_{m=1}^n b_m > 0$ for all $n \in \mathbb{N}$. So $\frac{a_n}{\prod_{m=1}^n b_m} \geq 0$ for all $n \in \mathbb{N}$. So $\sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m} \geq 0$ for all $k \in \mathbb{N}$. Or $\phi_k(\{a_n\}) \geq 0$ for all $k \in \mathbb{N}$. Suppose k = 0. Then $\phi_k(\{a_n\}) \geq 0$ for all $k \in \mathbb{N}_0$.

Remark 2.1

 $\{a_n\}$ is terminating if and only if there exists some $k \in \mathbb{N}$ such that $\phi(\{a_n\}) = \phi_k(\{a_n\})$.

Proof

Let
$$\{a_n\} \in \mathcal{A}$$
, $\{b_n\} = \beta(\{a_n\})$.
Suppose $\{a_n\}$ is terminating.

Then there exists some $k \in \mathbb{N}$ such that $a_n = 0$ for every n > k. So

$$\phi(\{a_n\}) = \sum_{n=1}^{\infty} \frac{a_n}{\prod_{m=1}^n b_m}$$

$$= \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m} + \sum_{n=k+1}^{\infty} \frac{0}{\prod_{m=1}^n b_m}$$

$$= \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}$$

$$= \phi_k(\{a_n\}).$$

Suppose $\{a_n\}$ is non-terminating.

Let $k \in \mathbb{N}$.

Since $\{a_n\}$ is non-terminating, there exists some k' > k such that $a_{k'} \neq 0$. So $\frac{a_{k'}}{\prod_{m=1}^{k'} b_m} > 0$. Therefore,

$$\phi_k(\{a_n\}) = \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}$$

$$< \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m} + \frac{a_{k'}}{\prod_{m=1}^{k'} b_m}$$

$$\leq \sum_{n=1}^{k'} \frac{a_n}{\prod_{m=1}^n b_m}$$

$$\leq \sum_{n=1}^\infty \frac{a_n}{\prod_{m=1}^n b_m}$$

$$= \phi(\{a_n\}).$$

So $\phi_k(\{a_n\}) \neq \phi(\{a_n\})$.

Corollary 2.2

It follows from Lemma 1.3 that

$$\phi(\{a_n\}) \le \phi_k(\{a_n\}) + \frac{1}{\prod_{m=1}^k b_m}$$
 (5)

for every $\{a_n\} \in \mathcal{A}$ and every $k \in \mathbb{N}_0$, where $\{b_n\} = \beta(\{a_n\})$.

Proof

Let $k \in \mathbb{N}_0$.

By Lemma 1.3,
$$\phi_{k'}(\{a_n\}) < \phi_k(\{a_n\}) + \frac{1}{\prod_{m=1}^k b_m}$$
 for every $k' > k$.

So it follows from Remark 1.2 that $\phi_{k'}(\{a_n\}) < \phi_k(\{a_n\}) + \frac{1}{\prod_{m=1}^k b_m}$ for every $k' \in \mathbb{N}_0$.

So $\phi_k(\{a_n\}) + \frac{1}{\prod_{m=1}^k b_m}$ is an upper bound for the set of all $\phi_{k'}(\{a_n\})$ such that $k' \in \mathbb{N}_0$.

By Monotone Convergence Theorem, $\phi(\{a_n\})$ is the least upper bound of the set of all $\phi_{k'}(\{a_n\})$ such that $k' \in \mathbb{N}_0$.

So
$$\phi(\{a_n\}) \le \phi_k(\{a_n\}) + \frac{1}{\prod_{m=1}^k b_m}$$
.

Lemma 3.1.a

It is trivial to show that $x_{k+1} \in [0,1)$

Proof

Suppose $x_{k+1} < 0$. Then $b_k x_k - a_k < 0$ So $x_k < \frac{a_k}{b_k}$. But by our choice of a_k , $x_k \ge \frac{a_k}{b_k}$. This is a contradiction. So $x_{k+1} \ge 0$. Suppose $x_{k+1} \ge 1$. Then $b_k x_k - a_k \ge 1$. So $x_k \ge \frac{a_k+1}{b_k}$. But $a_k + 1 > a_k$, and $a_k + 1 \in \mathbb{N}_0$. So $a_k \ne \max\{a \in \mathbb{N}_0 | \frac{a}{b_k} \le x_k\}$. This is a contradiction. Therefore, $x_{k+1} < 1$. So $x_{k+1} \in [0,1)$.

Lemma 3.1.b

$$\phi(\alpha_T(x)) = x$$

Proof

Case k = 1

By definition, $x_1 = x$. So by definition, $x_2 = b_1x - a_1$. Therefore, $\frac{x_2}{b_1} = x - \frac{a_1}{b_1}$.

Inductive Step

Let
$$k \in \mathbb{N}$$
.
Suppose $\frac{x_{k+1}}{\prod_{m=1}^k b_m} = x - \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}$.
By definition $x_{k+2} = b_{k+1} x_{k+1} - a_{k+1}$.
So $x_{k+1} = \frac{x_{k+2} + a_{k+1}}{b_{k+1}}$.

So
$$\frac{x_{k+2} + a_{k+1}}{\prod_{m=1}^{k+1} b_m} = x - \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}$$
.
Therefore $\frac{x_{k+2}}{\prod_{m=1}^{k+1} b_m} = x - \sum_{n=1}^{k+1} \frac{a_n}{\prod_{m=1}^n b_m}$.

Induction

By induction, for every $k \in \mathbb{N}$, $\frac{x_{k+1}}{\prod_{m=1}^k b_m} = x - \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}$. In other words, $\frac{x_{k+1}}{\prod_{m=1}^k b_m} = x - \phi_k(\alpha_T(x))$. Since $x_{k+1} \in [0,1)$ for all $k \in \mathbb{N}$,

$$\frac{0}{\prod_{m=1}^k b_m} \leq \frac{x_{k+1}}{\prod_{m=1}^k b_m} < \frac{1}{\prod_{m=1}^k b_m}.$$

By Axiom 5, for every $k \in \mathbb{N}$, there exists an n > k such that $b_n > 1$.

So $\lim_{k\to\infty}\frac{1}{\prod_{m=1}^k b_m}=0.$ So by Squeeze Theorem, $\lim_{k\to\infty}\frac{x_{k+1}}{\prod_{m=1}^k b_m}=0.$

Therefore, $0 = x - \phi(\alpha_T(x))$,

So $\phi(\alpha_T(x)) = x$.

Lemma 3.2.a

It is trivial to show that $x_{k+1} \in (0,1]$.

Proof

Suppose $x_{k+1} \leq 0$.

Then $b_k x_k - a_k \le 0$ So $x_k \le \frac{a_k}{b_k}$. But by our choice of a_k , $x_k > \frac{a_k}{b_k}$. This is a contradiction.

So $x_{k+1} > 0$.

Suppose $x_{k+1} > 1$.

Then $b_k x_k - a_k > 1$. So $x_k > \frac{a_k+1}{b_k}$. But $a_k + 1 > a_k$, and $a_k + 1 \in \mathbb{N}_0$. So $a_k \neq \max \{a \in \mathbb{N}_0 | \frac{a}{b_k} < x_k \}$. This is a contradiction.

Therefore, $x_{k+1} \leq 1$.

So $x_{k+1} \in (0,1]$.

Lemma 3.2.b

$$\phi(\alpha_N(x)) = x$$

Proof

Case k = 1

By definition, $x_1 = x$. So by definition, $x_2 = b_1 x - a_1$. Therefore, $\frac{x_2}{b_1} = x - \frac{a_1}{b_1}$.

Inductive Step

Let $k \in \mathbb{N}$.

$$\begin{array}{l} \text{t } k \in \mathbb{N}. \\ \text{Suppose } \frac{x_{k+1}}{\prod_{m=1}^k b_m} = x - \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}. \\ \text{By definition } x_{k+2} = b_{k+1} x_{k+1} - a_{k+1}. \\ \text{So } x_{k+1} = \frac{x_{k+2} + a_{k+1}}{b_{k+1}}. \\ \text{So } \frac{x_{k+2} + a_{k+1}}{\prod_{m=1}^{k+1} b_m} = x - \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}. \\ \text{Therefore } \frac{x_{k+2}}{\prod_{m=1}^{k+1} b_m} = x - \sum_{n=1}^{k+1} \frac{a_n}{\prod_{m=1}^n b_m}. \end{array}$$

Induction

By induction, for every $k \in \mathbb{N}$, $\frac{x_{k+1}}{\prod_{m=1}^k b_m} = x - \sum_{n=1}^k \frac{a_n}{\prod_{m=1}^n b_m}$. In other words, $\frac{x_{k+1}}{\prod_{m=1}^n b_m} = x - \phi_k(\alpha_N(x))$. Since $x_{k+1} \in (0,1]$ for all $k \in \mathbb{N}$,

$$\frac{0}{\prod_{m=1}^k b_m} < \frac{x_{k+1}}{\prod_{m=1}^k b_m} \le \frac{1}{\prod_{m=1}^k b_m}.$$

By Axiom 5, for every $k \in \mathbb{N}$, there exists an n > k such that $b_n > 1$. So $\lim_{k \to \infty} \frac{1}{\prod_{m=1}^k b_m} = 0$. So by Squeeze Theorem, $\lim_{k \to \infty} \frac{x_{k+1}}{\prod_{m=1}^k b_m} = 0$.

Therefore, $0 = x - \phi(\alpha_N(x))$,

So $\phi(\alpha_N(x)) = x$.

Remark 3.3.a

 $\alpha_N(x)$ is always non-terminating.

Proof

By the proof of Lemma 3.2.b, $\frac{x_{k+1}}{\prod_{k=1}^{k} b_m} = x - \phi_k(\alpha_N(x))$.

And $x_{k+1} \in (0,1]$.

So $x_{k+1} > 0$, So $\frac{x_{k+1}}{\prod_{m=1}^{k} b_m} > 0$ So $x - \phi_k(\alpha_N(x)) > 0$.

```
Therefore, \phi_k(\alpha_N(x)) \neq x = \phi(\alpha_N(x)).
So by Remark 2.1, \alpha_N(x) is non-terminating.
```

Remark 3.3.b

 $\alpha_T(x)$ is terminating if and only if there is some terminating $\{a_n\} \in \mathcal{A}$ such that $\phi(\{a_n\}) = x$.

Proof

```
Suppose that there is no terminating \{a_n\} \in \mathcal{A} such that \phi(\{a_n\}) = x.
     If \alpha_T(x) \in \mathcal{A}, then \phi(\alpha_T(x)) = x.
     So \alpha_T(x) cannot be terminating.
     Suppose that there exists some terminating \{a_n\} \in \mathcal{A} such that \phi(\{a_n\}) = x.
     Assume x = 1.
    Then by Corollary 1.4, \phi_k(\{a_n\}) < x for all k \in \mathbb{N}_0.
     So \{a_n\} is non-terminating, and, by contradiction, x \neq 1.
    Therefore, x \in [0, 1).
     So by Lemma 3.1, \alpha_T(x) \in \mathcal{A}.
     Assume \alpha_T(x) \neq \{a_n\}
    Let \{b_n\} = \beta(\{a_n\}).
    Then by Lemma 2.4, there exists some k \in \mathbb{N} such that x - \phi_k(\alpha_T(x)) =
\frac{1}{\prod_{m=1}^k b_m}. But by the proof of Lemma 3.1.b, there exists some x_{k+1} \in [0,1) such that
x - \phi_k(\alpha_T(x)) = \frac{x_{k+1}}{\prod_{m=1}^k b_m}.
So x_{k+1} = 1 \notin [0, 1). (Contradiction.)
     Therefore \alpha_T(x) = \{a_n\}.
    So \alpha_T(x) is terminating.
```

Corollary 3.4

As a consequence of Theorem 2 and Remark 3.3, $\{a_n\} \in \mathcal{A}$ if and only if $\{a_n\} = \alpha_T(x)$ or $\{a_n\} = \alpha_N(x)$ for some $x \in [0,1]$.

Proof

```
Suppose \{a_n\} = \alpha_T(x) or \{a_n\} = \alpha_N(x) for some x \in [0, 1].
 Then by Lemmas 3.1 and 3.2, \{a_n\} \in \mathcal{A}.
 Suppose \{a_n\} \in \mathcal{A}.
 Then \phi(\{a_n\}) = x for some x \in [0, 1].
 Suppose x = 1.
 Then by Corollary 1.4, \phi_k(\{a_n\}) < x for all k \in \mathbb{N}_0.
```

So by Remark 2.1, $\{a_n\}$ is non-terminating.

By Lemma 3.2, $\alpha_N(x) \in \mathcal{A}$.

By Remark 3.3, $\alpha_N(x)$ is non-terminating.

So by Lemma 2.5, $\{a_n\} = \alpha_N(x)$.

Suppose x = 0

Then by Remark 1.5, $\phi_k(\{a_n\}) \geq x$ for all $k \in \mathbb{N}_0$.

And by Monotone Convergence Theorem, $\phi_k(\{a_n\}) \leq x$ for all $k \in \mathbb{N}_0$.

So $\phi_k(\{a_n\}) = x$ for all $k \in \mathbb{N}_0$.

So by Remark 3.2, $\{a_n\}$ is terminating.

By Lemma 3.1, $\alpha_T(x) \in \mathcal{A}$.

By Remark 3.3, since $\{a_n\}$ is terminating, $\alpha_T(x)$ is terminating.

So by Lemma 2.5, $\{a_n\} = \alpha_T(x)$.

Suppose $x \in (0,1)$.

Then by Lemmas 3.1 and 3.2, $\alpha_T(x)$, $\alpha_N(x) \in \mathcal{A}$.

Suppose $\{a_n\}$ is terminating.

Then by Remark 3.3, since $\{a_n\}$ is terminating, $\alpha_T(x)$ is terminating.

So by Lemma 2.5, $\{a_n\} = \alpha_T(x)$.

Suppose $\{a_n\}$ is non-terminating.

By Remark 3.3, $\alpha_N(x)$ is non-terminating.

So by Lemma 2.5, $\{a_n\} = \alpha_N(x)$.