
Interval-Division Numeral Systems (Supplement)

JM

Abstract

A companion to Interval-Division Numeral Systems. A working out of all re-
marks, corollaries, and exercises for the reader.

(If you notice any errors, please let me know. Thanks.)
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Remark 1.1

φ({an}) = lim
k→∞

φk({an}) (1)

for every {an} ∈ A.

Proof

φ({an}) =

∞∑
n=1

an∏n
m=1 bm

= lim
k→∞

k∑
n=1

an∏n
m=1 bm

= lim
k→∞

φk({an})

Remark 1.2

φk+1({an}) ≥ φk({an}) (2)

for every {an} ∈ A and every k ∈ N0.

Proof

φk+1({an}) =

k+1∑
n=1

an∏n
m=1 bm

=

k∑
n=1

an∏n
m=1 bm

+
ak∏k

m=1 bm

= φk({an}) +
ak∏k

m=1 bm
.

ak∏k
m=1 bm

≥ 0,

φk({an}) +
ak∏k

m=1 bm
≥ φk({an}),

φk+1({an}) ≥ φk({an}).

Corollary 1.4

It follows from Lemma 1.3 that

φk({an}) < 1 (3)

for every {an} ∈ A and every k ∈ N0.
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Proof

Let {an} ∈ A and k ∈ N0

Suppose k = 0.
Then φk({an}) = 0 < 1.
Suppose k > 0.
Then by Lemma 1.3, φk({an}) < φ0({an}) + 1∏0

m=1 bm
= 0 + 1 = 1.

So φk({an}) < 1 for every {an} ∈ A and every k ∈ N0.

Remark 1.5

φk({an}) ≥ 0 (4)

for every {an} ∈ A and every k ∈ N0.

Proof

By definition, ai ≥ 0 and bi > 0 for all i ∈ N.
So

∏n
m=1 bm > 0 for all n ∈ N.

So an∏n
m=1 bm

≥ 0 for all n ∈ N.

So
∑k

n=1
an∏n

m=1 bm
≥ 0 for all k ∈ N.

Or φk({an}) ≥ 0 for all k ∈ N.
Suppose k = 0.
Then φk({an}) = 0.
So φk({an}) ≥ 0 for all k ∈ N0.

Remark 2.1

{an} is terminating if and only if there exists some k ∈ N such that φ({an}) =
φk({an}).

Proof

Let {an} ∈ A, {bn} = β({an}).
Suppose {an} is terminating.
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Then there exists some k ∈ N such that an = 0 for every n > k. So

φ({an}) =

∞∑
n=1

an∏n
m=1 bm

=

k∑
n=1

an∏n
m=1 bm

+

∞∑
n=k+1

0∏n
m=1 bm

=

k∑
n=1

an∏n
m=1 bm

= φk({an}).

Suppose {an} is non-terminating.
Let k ∈ N.
Since {an} is non-terminating, there exists some k′ > k such that ak′ 6= 0.
So ak′∏k′

m=1 bm
> 0. Therefore,

φk({an}) =

k∑
n=1

an∏n
m=1 bm

<

k∑
n=1

an∏n
m=1 bm

+
ak′∏k′

m=1 bm

≤
k′∑

n=1

an∏n
m=1 bm

≤
∞∑

n=1

an∏n
m=1 bm

= φ({an}).

So φk({an}) 6= φ({an}).

Corollary 2.2

It follows from Lemma 1.3 that

φ({an}) ≤ φk({an}) +
1∏k

m=1 bm
(5)

for every {an} ∈ A and every k ∈ N0, where {bn} = β({an}).

Proof

Let k ∈ N0.
By Lemma 1.3, φk′({an}) < φk({an}) + 1∏k

m=1 bm
for every k′ > k.
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So it follows from Remark 1.2 that φk′({an}) < φk({an}) + 1∏k
m=1 bm

for

every k′ ∈ N0.
So φk({an}) + 1∏k

m=1 bm
is an upper bound for the set of all φk′({an}) such

that k′ ∈ N0.
By Monotone Convergence Theorem, φ({an}) is the least upper bound of

the set of all φk′({an}) such that k′ ∈ N0.
So φ({an}) ≤ φk({an}) + 1∏k

m=1 bm
.

Lemma 3.1.a

It is trivial to show that xk+1 ∈ [0, 1)

Proof

Suppose xk+1 < 0.
Then bkxk − ak < 0
So xk <

ak

bk
.

But by our choice of ak, xk ≥ ak

bk
. This is a contradiction.

So xk+1 ≥ 0.
Suppose xk+1 ≥ 1.
Then bkxk − ak ≥ 1.
So xk ≥ ak+1

bk
.

But ak + 1 > ak, and ak + 1 ∈ N0.
So ak 6= max {a ∈ N0| abk ≤ xk}. This is a contradiction.
Therefore, xk+1 < 1.
So xk+1 ∈ [0, 1).

Lemma 3.1.b

φ(αT (x)) = x

Proof

Case k = 1

By definition, x1 = x.
So by definition, x2 = b1x− a1.
Therefore, x2

b1
= x− a1

b1
.

Inductive Step

Let k ∈ N.
Suppose xk+1∏k

m=1 bm
= x−

∑k
n=1

an∏n
m=1 bm

.

By definition xk+2 = bk+1xk+1 − ak+1.
So xk+1 = xk+2+ak+1

bk+1
.
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So xk+2+ak+1∏k+1
m=1 bm

= x−
∑k

n=1
an∏n

m=1 bm
.

Therefore xk+2∏k+1
m=1 bm

= x−
∑k+1

n=1
an∏n

m=1 bm
.

Induction

By induction, for every k ∈ N, xk+1∏k
m=1 bm

= x−
∑k

n=1
an∏n

m=1 bm
.

In other words, xk+1∏k
m=1 bm

= x− φk(αT (x)).

Since xk+1 ∈ [0, 1) for all k ∈ N,

0∏k
m=1 bm

≤ xk+1∏k
m=1 bm

<
1∏k

m=1 bm
.

By Axiom 5, for every k ∈ N, there exists an n > k such that bn > 1.
So limk→∞

1∏k
m=1 bm

= 0.

So by Squeeze Theorem, limk→∞
xk+1∏k
m=1 bm

= 0.

Therefore, 0 = x− φ(αT (x)),
So φ(αT (x)) = x.

Lemma 3.2.a

It is trivial to show that xk+1 ∈ (0, 1].

Proof

Suppose xk+1 ≤ 0.
Then bkxk − ak ≤ 0
So xk ≤ ak

bk
.

But by our choice of ak, xk >
ak

bk
. This is a contradiction.

So xk+1 > 0.
Suppose xk+1 > 1.
Then bkxk − ak > 1.
So xk >

ak+1
bk

.
But ak + 1 > ak, and ak + 1 ∈ N0.
So ak 6= max {a ∈ N0| abk < xk}. This is a contradiction.
Therefore, xk+1 ≤ 1.
So xk+1 ∈ (0, 1].

Lemma 3.2.b

φ(αN (x)) = x
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Proof

Case k = 1

By definition, x1 = x.
So by definition, x2 = b1x− a1.
Therefore, x2

b1
= x− a1

b1
.

Inductive Step

Let k ∈ N.
Suppose xk+1∏k

m=1 bm
= x−

∑k
n=1

an∏n
m=1 bm

.

By definition xk+2 = bk+1xk+1 − ak+1.
So xk+1 = xk+2+ak+1

bk+1
.

So xk+2+ak+1∏k+1
m=1 bm

= x−
∑k

n=1
an∏n

m=1 bm
.

Therefore xk+2∏k+1
m=1 bm

= x−
∑k+1

n=1
an∏n

m=1 bm
.

Induction

By induction, for every k ∈ N, xk+1∏k
m=1 bm

= x−
∑k

n=1
an∏n

m=1 bm
.

In other words, xk+1∏k
m=1 bm

= x− φk(αN (x)).

Since xk+1 ∈ (0, 1] for all k ∈ N,

0∏k
m=1 bm

<
xk+1∏k
m=1 bm

≤ 1∏k
m=1 bm

.

By Axiom 5, for every k ∈ N, there exists an n > k such that bn > 1.
So limk→∞

1∏k
m=1 bm

= 0.

So by Squeeze Theorem, limk→∞
xk+1∏k
m=1 bm

= 0.

Therefore, 0 = x− φ(αN (x)),
So φ(αN (x)) = x.

Remark 3.3.a

αN (x) is always non-terminating.

Proof

Let k ∈ N.
By the proof of Lemma 3.2.b, xk+1∏k

m=1 bm
= x− φk(αN (x)).

And xk+1 ∈ (0, 1].
So xk+1 > 0,
So xk+1∏k

m=1 bm
> 0

So x− φk(αN (x)) > 0.
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Therefore, φk(αN (x)) 6= x = φ(αN (x)).
So by Remark 2.1, αN (x) is non-terminating.

Remark 3.3.b

αT (x) is terminating if and only if there is some terminating {an} ∈ A such
that φ({an}) = x.

Proof

Suppose that there is no terminating {an} ∈ A such that φ({an}) = x.
If αT (x) ∈ A, then φ(αT (x)) = x.
So αT (x) cannot be terminating.
Suppose that there exists some terminating {an} ∈ A such that φ({an}) = x.
Assume x = 1.
Then by Corollary 1.4, φk({an}) < x for all k ∈ N0.
So {an} is non-terminating, and, by contradiction, x 6= 1.
Therefore, x ∈ [0, 1).
So by Lemma 3.1, αT (x) ∈ A.
Assume αT (x) 6= {an}
Let {bn} = β({an}).
Then by Lemma 2.4, there exists some k ∈ N such that x − φk(αT (x)) =
1∏k

m=1 bm
.

But by the proof of Lemma 3.1.b, there exists some xk+1 ∈ [0, 1) such that
x− φk(αT (x)) = xk+1∏k

m=1 bm
.

So xk+1 = 1 /∈ [0, 1). (Contradiction.)
Therefore αT (x) = {an}.
So αT (x) is terminating.

Corollary 3.4

As a consequence of Theorem 2 and Remark 3.3, {an} ∈ A if and only if
{an} = αT (x) or {an} = αN (x) for some x ∈ [0, 1].

Proof

Suppose {an} = αT (x) or {an} = αN (x) for some x ∈ [0, 1].
Then by Lemmas 3.1 and 3.2, {an} ∈ A.

Suppose {an} ∈ A.
Then φ({an}) = x for some x ∈ [0, 1].

Suppose x = 1.
Then by Corollary 1.4, φk({an}) < x for all k ∈ N0.
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So by Remark 2.1, {an} is non-terminating.
By Lemma 3.2, αN (x) ∈ A.
By Remark 3.3, αN (x) is non-terminating.
So by Lemma 2.5, {an} = αN (x).

Suppose x = 0
Then by Remark 1.5, φk({an}) ≥ x for all k ∈ N0.
And by Monotone Convergence Theorem, φk({an}) ≤ x for all k ∈ N0.
So φk({an}) = x for all k ∈ N0.
So by Remark 3.2, {an} is terminating.
By Lemma 3.1, αT (x) ∈ A.
By Remark 3.3, since {an} is terminating, αT (x) is terminating.
So by Lemma 2.5, {an} = αT (x).

Suppose x ∈ (0, 1).
Then by Lemmas 3.1 and 3.2, αT (x), αN (x) ∈ A.
Suppose {an} is terminating.
Then by Remark 3.3, since {an} is terminating, αT (x) is terminating.
So by Lemma 2.5, {an} = αT (x).
Suppose {an} is non-terminating.
By Remark 3.3, αN (x) is non-terminating.
So by Lemma 2.5, {an} = αN (x).
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