Interval-Division Numeral Systems (Supplement)

JM

Abstract

A companion to Interval-Division Numeral Systems. A working out of all re-
marks, corollaries, and exercises for the reader.

(If you notice any errors, please let me know. Thanks.)



Remark 1.1

6({an)) = lim 64({a,)) )
for every {a,} € A.
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Remark 1.2
drr1({an}) > dx({an}) (2)
for every {a,} € A and every k € Ny.
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Corollary 1.4

It follows from Lemma 1.3 that

or({an}) <1 (3)

for every {a,} € A and every k € Ny.



Proof

Let {a,} € Aand k € Ny
Suppose k = 0.
Then ¢r({a,}) =0 < 1.
Suppose k > 0.
Then by Lemma 1.3, ¢x({an}) < ¢o({an}) + ﬁ =0+1=1.
So ¢r({an}) < 1 for every {a,} € A and every ki € No.

Remark 1.5

or({an}) =0 (4)
for every {a,} € A and every k € Ny.

Proof

By definition, a; > 0 and b; > 0 for all i € N.
So [10 _; by, >0 for all n € N.

So 25— >0 for all n € N.

m=1"m
So Sy [t > 0 for all k € N,
Or (bk({an}T)nZ 0 for all k € N.
Suppose k = 0.
Then ¢r({a,}) =0.
So ¢ ({an}) > 0 for all k € Ny.

Remark 2.1

{a,} is terminating if and only if there exists some k € N such that ¢({a,}) =
or({an}).

Proof

Let {a,} € A, {bn} = B({an}).

Suppose {a,} is terminating.



Then there exists some k € N such that a,, = 0 for every n > k. So
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Suppose {a,} is non-terminating.
Let k € N.

Since {a,} is non-terminating, there exists some k' > k such that ay # 0.

So —4— > 0. Therefore,
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So ¢r({an}) # d({an}).
Corollary 2.2
It follows from Lemma 1.3 that
1

o({an}) < or({an}) + m

for every {a,} € A and every k € Ny, where {b,} = 8({an}).

Proof

Let k € No.
By Lemma 1.3, ¢p ({an}) < ¢dr({an}) + H’“ - for every E > k.
—1 b




So it follows from Remark 1.2 that ¢ ({an}) < or({an}) + T L— for
m=10m

every k' € Ny.
So ¢r({an}) + ik 1 ;— is an upper bound for the set of all ¢4/ ({a,}) such
m=1"m
that k" € No.
By Monotone Convergence Theorem, ¢({a,}) is the least upper bound of
the set of all ¢y ({an}) such that k" € Np.

So ¢({an}) < dr({an}) + Frtgm

m=1

Lemma 3.1.a

It is trivial to show that zj41 € [0,1)

Proof

Suppose zi+1 < 0.
Then brxyp —ar <0
So xp < %.
But by our choice of ay, xp > ‘Z—’; This is a contradiction.
So zpy+1 > 0.
Suppose x4 > 1.
Then byxy —ap > 1.
So Tk > a;zi:l.
But ax + 1 > ax, and ar + 1 € Ng.
So ay # max {a € No|;- < 2x}. This is a contradiction.
Therefore, xi41 < 1.
So x4 € [O, 1).

Lemma 3.1.b

dlar(z)) ==
Proof
Casek =1

By definition, x; = x.
So by definition, zo = by — a;.
Therefore, i—f =x— %.

Inductive Step

Let k € N.
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By induction, for every k € N, oo =&~ Yo S
In other words, % =1z — ¢p(ar(x)).
m=19m
Since zp41 € [0,1) for all k € N,
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By Axiom 5, for every k € N, there exists an n > k such that b, > 1.
So limy_ 0 m =0. |
So by Squeeze Theorem, limy_, ﬁ =0.
Therefore, 0 = x — ¢(ar(x)),
So ¢(ar(x)) = z.

Lemma 3.2.a

It is trivial to show that z44+1 € (0,1].

Proof

Suppose zi+1 < 0.
Then brxyp —ar <0
So Tk S %'
But by our choice of ag, xp > ‘Z—:. This is a contradiction.
So zp4+1 > 0.
Suppose zp+1 > 1.
Then by —ap > 1.
So xp > a’zi:l.
But ax + 1 > ax, and ar + 1 € Ng.
So ay, # max {a € No|;- < 2x}. This is a contradiction.
Therefore, x541 < 1.
So zx41 € (0,1].

Lemma 3.2.b
dlan(z)) ==



Proof
Casek =1

By definition, 1 = x.

So by definition, xo = byx — ay.
Therefore, 72 =z — ¢*.
1 1

Inductive Step

Let k € N.
Te+1 ..k an
Suppose M om  F 2n=1 e bm
By definition x;i+2 = bpp1Tp41 — kg1
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So Tk+1 = 7bk+1 .
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Induction
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By induction, for every k € N, 0o, =%~ Yo R
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In other words, ﬁ =x — ¢plan(x)).
Since zg4+1 € (0,1] for all k € N,
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By Axiom 5, for every k € N, there exists an n > k such that b,, > 1.

So by Squeeze Theorem, limy_; oo % =0.
m=1"-"m

Therefore, 0 = z — ¢(ay(x)),
So ¢(an(x)) = .

Remark 3.3.a

ap(z) is always non-terminating.

Proof

Let k € N.
By the proof of Lemma 3.2.b, ="— =z — ¢ (an(z)).
m=1"m
And Tri1 € (O, 1}
So Tht1 > 0,

So =2kl 5 ()
[T bm

So z — ¢r(an(z)) > 0.



Therefore, ¢i(an(z)) # x = d(an(z)).
So by Remark 2.1, av(z) is non-terminating.

Remark 3.3.b

ar(z) is terminating if and only if there is some terminating {a,} € A such

that ¢({an}) = .

Proof

Suppose that there is no terminating {a,} € A such that ¢({a,}) = =.

If ar(z) € A, then ¢(ar(x)) = .

So ar(x) cannot be terminating.

Suppose that there exists some terminating {a,} € A such that ¢({a,}) = .

Assume z = 1.

Then by Corollary 1.4, ¢r({an}) < x for all k € Nj.

So {ay} is non-terminating, and, by contradiction, x # 1.

Therefore, z € [0,1).

So by Lemma 3.1, ap(z) € A.

Assume ar(z) # {an}

Let {bn} = B({an}).

Then by Lemma 2.4, there exists some k € N such that x — ¢x(ar(z)) =
i

But by the proof of Lemma 3.1.b, there exists some 41 € [0,1) such that
v — bl (z)) = P

Soxpr1=1¢ [O 1) (Contradiction.)

Therefore ar(x) = {a,}.

So ar(x) is terminating.

Corollary 3.4

As a consequence of Theorem 2 and Remark 3.3, {a,} € A if and only if
{an} = ar(z) or {a,} = an(z) for some z € [0, 1].

Proof

Suppose {a,} = ar(z) or {a,} = ay(z) for some z € [0, 1].
Then by Lemmas 3.1 and 3.2, {a,} € A.

Suppose {a,} € A.
Then ¢({a,}) = z for some z € [0,1].

Suppose z = 1.
Then by Corollary 1.4, ¢ ({a,}) < x for all k € Nj.



So by Remark 2.1, {a,} is non-terminating.
By Lemma 3.2, ay(x) € A.

By Remark 3.3, ay(z) is non-terminating.
So by Lemma 2.5, {a,} = an(z).

Suppose z =0

Then by Remark 1.5, ¢x({a,}) > x for all k € Ny.

And by Monotone Convergence Theorem, ¢ ({an}) < x for all k € Ny.
So ¢ ({an}) = x for all k € Ny.

So by Remark 3.2, {a,,} is terminating.

By Lemma 3.1, ap(z) € A.

By Remark 3.3, since {a,} is terminating, ar(x) is terminating.

So by Lemma 2.5, {a,,} = ar(x).

Suppose z € (0,1).

Then by Lemmas 3.1 and 3.2, ar(x), an(z) € A.

Suppose {a,} is terminating.

Then by Remark 3.3, since {a, } is terminating, ar(x) is terminating.
So by Lemma 2.5, {a,,} = ar(x).

Suppose {a,} is non-terminating.

By Remark 3.3, ay () is non-terminating.

So by Lemma 2.5, {a,} = an(z).



